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Abstract This paper mainly discusses the (2+1)-dimensional modified dispersive water-wave (MDWW) system which
will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the
symmetries of the system. Moreover, via the truncated Painlevé analysis and consistent tanh-function expansion (CTE)
method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved.
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1 Introduction
Conservation laws, essential in the study of differential

equations mathematically and physically, propose one of
the primary principles to formulate and investigate mod-
els, especially in existence, uniqueness and stability of so-
lutions. In addition, the integrability of the system is
quite possible should conservation laws exist in it.[1−2] For
conservation laws, different methods have been mobilized.
The celebrated Noether’s theorem[3] proves to be a sys-
tematic and efficient approach in finding conservation laws
of PDEs unless there exists a Lagrangian. However, there
exist some equations not having a Lagrangian. Hence the
Noether’s theorem cannot be used to obtain conservation
laws directly because of the equation symmetries. This,
however, can be solved with the general concept of nonlin-
ear self-adjointness proposed by Ibragimov,[4−7] and Gan-
darias to construct the conservation laws for any differen-
tial equation.[8] This procedure can be true of classes of
single differential equations of any order but of the sys-
tems where the number of equations is equal to that of
dependent variables.[9−11]

On the other hand, it is an important and major sub-
ject to seek exact solutions and interactions among so-
lutions to nonlinear equation to explain some physical
phenomena further. The special solutions to an inte-
grable system can be derived from many effective meth-
ods such as symmetry reductions,[12] the variable sepa-
ration approach,[13] the inverse scattering transformation
approach,[14] the Darboux transformation (DT),[15−16] the
Bäcklund transformation (BT),[17] the bilinear method,[18]

and Painlevé analysis,[19] to name just a few. However, it
is difficult to find the interaction solutions among different
types of nonlinear excitations besides the soliton-soliton
interaction. Recently, Lou et al. made a breakthrough
in interaction solutions between solitons and any other
types of nonlinear soliton waves by using two equivalent
simple methods: the truncated Painlevé analysis and the
generalized tanh expansion approaches,[20−21] which are
proved to be effective for more types of solutions to many
integrable systems.

This paper concentrates on investigating the non-
linear self-adjointness, conservation laws and interaction
solutions between a soliton and cnoidal wave[22−26] of
the (2+1)-dimensional modified dispersive water-wave
(MDWW) system, which can be written as

F1 = uyt + uxxy − 2vxx − u2xy = 0 ,

F2 = vt − vxx − 2uxv − 2uvx = 0 , (1)

system (1), modeling nonlinear and dispersive long grav-
ity waves in two horizontal directions on shallow waters
of uniform depth. MDWW is derived from the famous
Kadomtsev–Petviashvili (KP) equation with the symme-
try constraints.[27] In Refs. [28]–[29], Painlevé–Bäcklund
transformations, along with a multilinear variable separa-
tion approach help a lot in securing abundant propagat-
ing localized excitations. Reference [30] shows many new
types of non-traveling solutions acquired via a further gen-
eralized projective Riccati equation method. In [31], the
extended mapping approach assists in getting some non-
propagating and propagating solitons. Reference [32] en-
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gages in new types of interactions between solitons such as
a compacton-like semi-foldon and a compacton, a peakon-
like semi-foldon and a peakon based on new variable sep-
aration solutions with arbitrary functions for MDWW (1)
by using the projective Riccati equation expansion. In
Ref. [33], special types of periodic folded waves are de-
rived from the WTC truncation method. In Ref. [34],
Hirota bilinear method is of great assistance in construct-
ing multiple soliton solutions with arbitrary functions for
system (1). For system (1), Ref. [35] emphasizes symme-
try reduction. However, the research into the nonlinear
self-adjoint, conservation law and soliton-cnodial wave so-
lution of Eqs. (1) have not been mentioned in the above
literature.

This paper is arranged as follows. Section 2 intro-
duces the main notations and theorems used in this pa-
per. In Sec. 3, the nonlinear self-adjointness for the (2+1)-
dimensional (MDWW) system will be discussed, which is
a vital link in applying Ibragimov’s theorem. In Sec. 4,
based on Lie symmetry analysis acquired and Ibragimov’s
theorem, conservation laws of system (1) are established.
In Sec. 5, we derive new explicit interactions solutions
between solitons and cnoidal periodic waves by the trun-
cated Painlevé analysis and the consistent tanh expansion
(CTE) method for the (2+1)-dimensional MDWW sys-
tem. In the last section, some conclusions and discussion
will be given.

2 Preliminaries
This section aims to present the notations and theo-

rems used in this paper.

Definition 1 (Ref. [6]) Consider a system of equations

Fα(x, u, u(1), . . . , u(s)) = 0, α = 1, . . .m , (2)

with n independent variables x = (x1, . . . , xn), m depen-
dent variables u = (u1, . . . , um) and where u(s) denotes
the set of the partial derivatives of s-th order of u. The
adjoint equation to Eqs. (2) is

F ∗
α(x, u, v, . . . , u(s), v(s)) = 0, α = 1, . . . ,m , (3)

with

F ∗
α(x, u, v, . . . , u(s), v(s)) =

δL

δuα
, α = 1, . . . ,m , (4)

where L is the formal Lagrangian for Eq. (2) given by

L =

m∑
β=1

vβFβ(x, u, u(1), . . . , u(s)) , (5)

with v = (v1, . . . , vm) as new dependent variables, vα =
vα(x), and δ/δuα as the variational derivative

δ

δuα
=

∂

∂uα
+

∞∑
s=1

(−1)sDi1 · · ·Dis

∂

∂uαi1···is
.

Definition 2 (Ref. [7]) The system (2) is said to be
nonlinearly self-adjoint if the following equations hold:

F ∗
α(x, u, v, . . . , u(s), v(s))|vα=ϕα(x,u)

= λβαFβ(x, u, . . . , u(s)), α = 1, . . . ,m , (6)

with ϕ(x, u) ̸= 0, where λβα are undetermined coefficients,
and ϕ is the m-dimensional vector ϕ = (ϕ1, . . . , ϕm).

In Ref. [6], Eqs. (3) succeeds the symmetries of the sys-
tem (2), which has been proved by Ibragimov. In other
words, if the system (2) admits a point transformation
group with a generator

X = ξi(x, u, u(1), . . .)
∂

∂xi
+ ηα(x, u, u(1), . . .)

∂

∂uα
, (7)

then the adjoint system (3) admits the operator (7) ex-
tended to the variables vα by the formula

Y = ξi
∂

∂xi
+ ηα

∂

∂uα
+ ηα∗

∂

∂vα
. (8)

Theorem 1 (Ref. [6]) Any infinitesimal symmetry (Lie
point, Lie Bäcklund, nonlocal)

X = ξi(x, u, u(1), . . .)
∂

∂xi
+ ηα(x, u, u(1), . . .)

∂

∂uα

of a system equations (2) provides a conservation law
Di(C

i) = 0 for the system of differential equations con-
sisting of Eqs. (2) and the adjoint Eqs. (3). The conserved
vector is given by

Ci = ξiL+Wα
[ ∂L
∂uαi

−Dj

( ∂L

∂uαij

)
+DjDk

( ∂L

∂uαijk

)
− · · ·

]
+Dj(W

α)
[ ∂L
∂uαij

−Dk

( ∂L

∂uαijk

)
− · · ·

]
+DjDk(W

α)
[ ∂L

∂uαijk
− · · ·

]
, (9)

and Wα = ηα − ξjuαj .

3 Nonlinear Self-Adjointness of System (1)
For system (1), according to Definition 1, the following

formal Lagrangian can be deduced

L = u∗1(uyt + uxxy − 2vxx − u2xy)

+ v∗1(vt − vxx − 2uxv − 2uvx) , (10)

where u∗1 and v∗1 are two new dependent variables. The
adjoint system of the system (1) is

F ∗
1 =

δL

δu
= 0, F ∗

2 =
δL

δv
= 0 , (11)

where, in this case

δL

δu
=
∂L

∂u
−Dx

∂L

∂ux
−Dy

∂L

∂uy
+DyDt

∂L

∂uyt

+DxDy
∂L

∂uxy
−DxDxDy

∂L

∂uxxy
,

δL

δv
=
∂L

∂v
−Dx

∂L

∂vx
−Dt

∂L

∂vt
+DxDx

∂L

∂vxx
,

with Dx, Dy and Dt denoting the operator of total differ-
entiation with x, y, and t respectively. Should Eq. (10)
be considered, the adjoint system (11) for system (1) will
change into

F ∗
1 = u∗1yt + 2vv∗1x − 2uu∗1xy − u∗1xxy = 0 ,

F ∗
2 = v∗1t − 2uv∗1x + 2u∗1xx + v∗1xx = 0 . (12)
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System (1) is not recovered if u is substituted for u∗1 and v
for v∗1 , so system (1) is not self adjoint.[10] Based on Defini-
tion 2, nonlinearly self-adjoint will the system (1) become
if each equation F ∗

i (i = 1, 2) of the adjoint system (12)
satisfies the following condition

F ∗
1 = λ11F1 + λ12F2, F ∗

2 = λ21F1 + λ22F2 , (13)

with regular undetermined coefficients λij (i, j = 1, 2) af-
ter substituting the following expression

u∗1 = ϕ(x, y, t, u, v), v∗1 = ψ(x, y, t, u, v) , (14)

with ϕ(x, y, t, u, v) ̸= 0 or ψ(x, y, t, u, v) ̸= 0. Were the
differential consequences of (14) to be introduced, system
(12) split into the following equations for the coefficients
λij (i, j = 1, 2)

λ11 = ϕu, λ12 = ϕyv ,

λ21 =
1

2
(ϕv + ψv), λ22 = −ψv ,

and into the system for the substitution (14)

ϕu = ϕv = ψu = ψv = ψx = 0, ϕyt − ϕxxy = 0 ,

ϕxy = 0, ψt + ψxx + 2ϕxx = 0 . (15)

Once they are solved, the following solution will come

ϕ =
1

2
ġ1x

2 + g2x+ g3 + g4, ψ = −2g1 + g4 , (16)

where g1, g2, g3 are arbitrary functions of t, and g4 of y,
and the dot over the function denotes its derivative with
respect to its variable. Then, according to the Definition
2, system (1) is nonlinearly self adjoint.

4 Lie Symmetries and Conservation Laws of
System (1)
The performance of corresponding Lie symmetry anal-

ysis by classical lie group method is the prerequisite to de-
rive conservation laws for system (1). It needs to consider
a one-parameter Lie group of infinitesimal transformations

x→ x+ ϵξ1(x, y, t, u, v), y → y + ϵξ2(x, y, t, u, v) ,

t→ t+ ϵξ3(x, y, t, u, v), u→ u+ ϵη1(x, y, t, u, v) ,

v → v + ϵη2(x, y, t, u, v) , (17)

with a small parameter ϵ≪ 1. The vector field related to

the above transformations can be described as

X = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂t
+ η1

∂

∂u
+ η2

∂

∂v
. (18)

Then the invariance of system (1) under transformation

(17) makes the functions ξ1, ξ2, ξ3, η1, η2 take the form

ξ1 =
1

2
ḟ2x+ f3, ξ2 = f1, ξ3 = f2 ,

η1 = −1

2
ḟ2u+

1

2
f̈2x+ ḟ3 ,

η2 = −1

2
v(2ḟ1 + ḟ2) , (19)

where f1 is arbitrary function of y, f2, f3 of t, and the

dot over the functions means their derivative with respect

to their variable. An infinite-dimensional Lie algebra of

symmetries is resulted from the existence of the arbitrary

functions. A general element of this algebra is depicted as

X = X1 +X2 +X3 , (20)

where

X1 = f1
∂

∂y
− ḟ1v

∂

∂v
, (21)

X2 =
1

2
ḟ2

∂

∂x
+ f2

∂

∂t
− 1

2

(
uḟ2 +

1

2
xf̈2

) ∂

∂u

− 1

2
ḟ2v

∂

∂v
, (22)

X3 = f3
∂

∂x
+ ḟ3

∂

∂u
. (23)

What follows is to apply the Theorem 1 to seek for con-

servation laws of system (1). For (1), the adjoint equation

is given by

F ∗
1 = u∗1yt + 2vv∗1x − 2uu∗1xy − u∗1xxy = 0 ,

F ∗
2 = v∗1t − 2uv∗1x + 2u∗1xx + v∗1xx = 0 , (24)

and the Lagrangian in the symmetrized form

L = u∗1

(1
2
uyt +

1

2
uty − 2uxuy − uuxy − uuyx +

1

3
uxxy +

1

3
uxyx +

1

3
uyxx − 2vxx

)
+ v∗1(vt − 2uxv − 2uvx − vxx) . (25)

Consider Theorem 1, the corresponding vector fields can be written as

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ ξ3

∂

∂y
+ η1

∂

∂u
++η2

∂

∂v
. (26)

The conservation law is decided by

Dt(C
1) +Dx(C

2) +Dy(C
3) = 0 . (27)

Here the conserved vector C = (C1, C2, C3) is given by (9) and the concrete forms are as follows

C1 = ξ1L+W 2 ∂L

∂vt
−W 1Dy

∂L

∂uty
+W 1

y

∂L

∂uty
,

C2 = ξ2L+W 1
( ∂L
∂ux

−Dy
∂L

∂uxy
+Dxy

∂L

∂uxxy
+Dyx

∂L

∂uxyx

)
+W 2

( ∂L
∂vx

−Dx
∂L

∂vxx

)
+W 1

y

( ∂L

∂uxy
−Dx

∂L

∂uxyx

)
−W 1

xDy
∂L

∂uxxy
+W 2

x

∂L

∂vxx
+W 1

xy

∂L

∂uxxy
+W 1

yx

∂L

∂uxyx
,
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C3 = ξ3L+W 1
( ∂L
∂uy

−Dx
∂L

∂uyx
+Dxx

∂L

∂uyxx

)
+W 1

t

∂L

∂uyt
+W 1

x

( ∂L

∂uyx
−Dx

∂L

∂uyxx

)
+W 1

xx

∂L

∂uyxx
. (28)

Substituting (25) into (28), it will change into

C1 = ξ1L+W 2v∗1 − 1

2
(W 1u∗1y − u∗1W

1
y ) ,

C2 = ξ2L+W 1
(
− 2u∗1uy − 2v∗1v + uyu

∗
1 + uu∗1y +

2

3
u∗1xy

)
+W 2(−2uv∗1 + 2u∗1x + v∗1x)

−W 1
y

(
uu∗1 +

1

3
u∗1x

)
− 1

3
W 1

xu
∗
1y −W 2

x (2u
∗
1 + v∗1) +

2

3
u∗1W

1
xy ,

C3 = ξ3L+W 1
(1
3
u∗1xx − 2u∗1ux − 1

2
u∗1t + uxu

∗
1 + uu∗1x

)
+

1

2
W 1

t u
∗
1 −W 1

x

(
uu∗1 +

1

3
u∗1x

)
+

1

3
u∗1W

1
xx ,

with
W 1 = η1 − ξ1ut − ξ2ux − ξ3uy, W 2 = η2 − ξ1vt − ξ2vx − ξ3vy .

In regard to (21), we consider the following cases.

Case 1 For the generator

X1 = f1
∂

∂y
− vf1y

∂

∂v
,

the Lie characteristic functions are
W 1 = −f1uy, W 2 = −vf1y − f1vy ,

one can obtain the conservation vector of (1)

C1 = −(vf1y + f1vy)v
∗
1 +

1

2
(f1uyu

∗
1y − u∗1f1yuy − u∗1f1uyy) ,

C2 = f1uy

(
2u∗1uy + 2v∗1v − uyu

∗
1 − uu∗1y −

2

3
u∗1xy

)
− (vf1y + f1vy)(v

∗
1x − 2uv∗1 + 2u∗1x)

+ (f1yuy + f1uyy)
(
uu∗1 +

1

3
u∗1x

)
+

1

3
u∗1yf1uyx + (vxf1y + f1vyx)(2u

∗
1 + v∗1)−

2

3
u∗1(f1yuxy + f1uxyy) ,

C3 = f1u
∗
1(uyt − 2uxuy − 2uuxy + uxxy − 2vxx) + f1v

∗
1(vt − 2uxv − 2uvx − vxx)

− f1uy

(1
3
u∗1xx − 2u∗1ux − 1

2
u∗1t + uxu

∗
1 + uu∗1x

)
+ f1uyx

(
uu∗1 +

1

3
u∗1x

)
− 1

2
u∗1f1uyt −

1

3
u∗1f1uyxx .

Case 2 For the generator

X2 =
1

2
xf2t

∂

∂x
+ f2

∂

∂t
− 1

2

(
uf2t +

1

4
xf2tt

) ∂

∂u
− 1

2
vf2t

∂

∂v
,

the Lie characteristic functions are

W 1 = −1

2

(
uf2t +

1

2
xf2tt

)
− f2ut −

1

2
xf2tux, W 2 = −1

2
vf2t − f2vt −

1

2
xf2tvx ,

we can get the conservation vector of (1)

C1 = f2u
∗
1(uty − 2uxuy − 2uuxy + uxxy − 2vxx) + f2v

∗
1(vt − 2uxv − 2uvx − vxx)

− 1

2
v∗1

(
vf2t + f2vt +

1

2
xf2tvx

)
+
[1
4

(
uf2t +

1

2
xf2tt

)
+ f2ut +

1

2
xf2tux

]
u∗1y

− 1

2
u∗1

(1
2
uyf2t + f2uty +

1

2
xf2tuxy

)
,

C2 =
1

2
xf2tu

∗
1(uyt − 2uxuy − 2uuxy + uxxy − 2vxx) +

1

2
xf2tv

∗
1(vt − 2uxv − 2uvx − vxx)

+
(1
2
uf2t +

1

8
xf2tt + f2ut +

1

2
xf2tux

)(
2u∗1uy + 2v∗1v − uyu

∗
1 − uu∗1y −

2

3
u∗1xy

)
−

(1
2
vf2t + f2vt +

1

2
xf2tvx

)
(v∗1x − 2uv∗1 + 2u∗1x) +

(1
2
uyf2t + f2uty +

1

2
xf2tuxy

)(
uu∗1 +

1

3
u∗1x

)
+

1

3
u∗1y

(1
2
uxf2t +

1

4
f2tt + f2utx +

1

2
f2tux +

1

2
xf2tuxx

)
+

(1
2
vxf2t + f2vtx +

1

2
f2tvx +

1

2
xf2tvxx

)
(2u∗1 + v∗1)−

1

3
u∗1(2f2tuxy + 2f2utxy + f2txuxxy) ,

C3 = −
(1
2
uf2t +

1

4
xf2tt + f2ut +

1

2
xf2tux

)(1
3
u∗1xx − 2u∗1ux − 1

2
u∗1t + uxu

∗
1 + uu∗1x

)
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+
(1
2
uxf2t +

1

4
f2tt + f2utx +

1

2
f2tux +

1

2
xf2tuxx

)(
uu∗1 +

1

3
u∗1x

)
− 1

2
u∗1

(1
2
utf2t +

1

2
uf2tt +

1

4
xf2ttt + f2tut + f2utt +

1

2
xf2ttux +

1

2
xf2tuxt

)
− 1

6
u∗1(3f2tuxx + 2f2utxx + f2txuxxx) .

Case 3 For the generator

X3 = f3
∂

∂x
+ f3t

∂

∂u
,

the Lie characteristic functions are
W 1 = f3t − f3ux, W 2 = −f3vx ,

we derive the conservation vector of (1)

C1 = −f3vxv∗1 − 1

2
[(f3t − f3ux)u

∗
1y + f3uxyu

∗
1] ,

C2 = f3u
∗
1(uyt − 2uxuy − 2uuxy + uxxy − 2vxx) + f3v

∗
1(vt − 2uxv − 2uvx − vxx)

+ (f3t − f3ux)
(2
3
u∗1xy − 2u∗1uy − 2v∗1v + uyu

∗
1 + uu∗1y

)
− f3vx(2u

∗
1x − 2uv∗1

+ v∗1x) + f3uxy

(
uu∗1 +

1

3
u∗1x

)
+

1

3
f3uxxu

∗
1y + f3vxx(2u

∗
1 + v∗1)−

2

3
f3u

∗
1uxxy ,

C3 = (f3t − f3ux)
(1
3
u∗1xx − 2u∗1ux − 1

2
u∗1t + uxu

∗
1 + uu∗1x

)
+ f3uxx

(
uu∗1 +

1

3
u∗1x

)
+

1

2
u∗1(f3tt − f3tux − f3uxt)−

1

3
u∗1f3uxx .

Remark 1 Clearly, the above conservation vector Ci

(i = 1, 2, 3) includes an arbitrary solution u∗1, v
∗
1 to ad-

joint Eqs. (24), so the number of the conservation laws it

presents is infinite.

5 Soliton-Cnoidal Wave Interaction Solutions
of System (1)

Obviously, the Painlevé analysis is one of the effec-

tive approaches for special solutions to nonlinear physical

systems. For the (2+1)-dimensional MDWW system, its

truncated Painlevé expansion can be expressed as

u =
u1
ϕ

+ u0, v =
v2
ϕ2

+
v1
ϕ

+ v0 , (29)

with u0, u1, v0, v1, v2, ϕ being the functions of x, y and t.

By substituting Eq. (29) into system (1) and vanishing all

the coefficients of different powers of 1/ϕ comes

u0 = ϕx, u1 = 2ϕx, u1 =
ϕt − ϕxx

2ϕx
,

v0 = −ϕyϕx, v1 = ϕxy ,

v2 =
−1

2ϕ2x
(ϕxyϕt − ϕytϕx − ϕxyϕxx + ϕxxyϕx) , (30)

and then we obtain

u =
2ϕ2x + ϕϕt − ϕϕxx

2ϕxϕ
,

v =
1

−2ϕ2xϕ
2
(2ϕyϕ

3
x − 2ϕxyϕϕ

2
x + ϕxyϕ

2ϕt

− ϕxyϕ
2ϕxx − ϕytϕxϕ

2 + ϕxxyϕxϕ
2) , (31)

which is the solution to the MDWW system, and the field

ϕ satisfies the following Schwarzian form

−1

2
CCx +

1

2
Sx +

1

2
Ct − Cxx + λ = 0 , (32)

where λ is an arbitrary integral parameter, and

C =
ϕt
ϕx
, S =

ϕxxx
ϕx

− 3

2

(ϕxx
ϕx

)2

.

The Schwarzian form (32) is invariant under the Möbious

transformation

ϕ→ a+ bϕ

c+ dϕ
(ad ̸= bc) .

That is to say, Eq. (32) bears three symmetries σϕ = d1,

σϕ = d2ϕ, and σ
ϕ = d3ϕ

2 with arbitrary constants d1, d2
and d3.

Adopting the following straightening transformation,

ϕ =
2

tanh(w)− 1
, (33)

where w is the function of x, y, and t. After substitut-

ing the expression (33) into system (31), the equivalent

solutions to MDWW system come as

u = wx tanh(w)−
wxx − wt

2wx
,

v = −wxwy tanh
2(w) + wxy tanh(w) + wxwy

+
wyt − wxxy

2wx
+
wxxwxy − wtwxy

2w2
x

, (34)

and the equivalent compatibility condition for w as

1

2
C1t −

1

2
C1C1x − C1xx +

1

2
S1x + 2wxwxx = 0 , (35)
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where

C1 =
wt

wx
, S1 =

wxxx

wx
− 3

2

(wxx

wx

)2

.

Clearly, the solutions (34) are derived from the transfor-
mation (33), where the usual truncated Painlevé expan-
sion approach is converted into the most general extension
of the special tanh function expansion method, so it can be
said the solutions (34) are the generalization of the usual
tanh function expansion method. Here we can obtain the
solution (34) by the CTE approaches.[36]

For the MDWW system (1), the application of lead-
ing order analysis can result in the following generalized
truncated tanh function expansion

u = u0 + u1 tanh(w) ,

v = v0 + v1 tanh(w) + v2 tanh
2(w) , (36)

where u0, u1, v0, v1, v2 and w are functions of x, y, and t.

Substituting expression (36) into system (1) and vanishing

all the coefficients of tanhi(w), we have

u0 =
wt − wxx

2wx
, u1 = wx ,

v1 = wxy, v2 = −wxwy ,

v0 =
−1

2w2
x

(−2wyw
3
x + wtwxy − wxwyt + wxwxxy

− wxxwxy) , (37)

and then we deduce the same solution (34) to the MDWW

system (1) with the consistent condition (35).

Fig. 1 The soliton-cnodial periodic wave solution to u: (a) The profile of the special structure with t = 0 and y = 0.
(b) The profile of the special structure at t = 0 and x = 0. (c) Perspective view of the wave.

Fig. 2 The soliton-cnodial periodic wave solutions to v: (a) The profile of the special structure with t = 0 and y = 0.
(b) The profile of the special structure with t = 0 and x = 0. (c) Perspective view of the wave.

The above shows that the single soliton (or soli-

tary wave) solution to the MDWW system (1) is only a

straightened solution w = k1x+l1y+d1t to Eq. (35), which

implies that to find the interaction solutions between soli-

tons and other nonlinear excitations, what is needed is to

acquire the solution to Eq. (35). In this paper we focus

on the following special Jacobi elliptic function

w = h1x+ h2y + h3t

+ λEπ(sn(q1x+ q2y + q3t,m), n,m) , (38)

as the solution to Eq. (35), which characterizes the interac-

tions between a soliton and a cnoidal wave. h1, h2, h3, q1,

q2, q3, λ,m and n are determined later. In (38), sn(z,m)

is the usual Jacobi elliptic sine function and

Eπ(ζ, n,m) =

∫ ζ

0

dt

(1− nt2)
√
(1− t2)(1−m2t2)

is the third type of incomplete elliptic integral. By sub-
stituting (38) into (35) and solving the over-determined
equations with the help of maple will come

h1 = 0, h2 = h2, h3 = h3, λ = λ, m = m,

n = n, q1 = q1, q2 = q2, q3 = q3 , (39)

where h2, h3, λ,m, n, q1, q2 and q3 are arbitrary constants.
Substituting Eqs. (37), (38), and (39) into (36), we can ob-
tain the interaction solution between soliton and cnoidal
periodic waves. The result is omitted here because of its



No. 1 Communications in Theoretical Physics 21

prolixity. Corresponding images are as follows and the
parameters used in the figure are selected as {h2 = 1.4,
h3 = −0.5, λ = −0.3, q1 = −0.9, q2 = −0.5, q3 = 0.2,
m = 0.8, n = 0.5}.

Remark 3 Figures 1 and 2 illustrate the soliton-cnoidal
periodic wave solutions to the fields u and v describing
a soliton travels on a cnoidal wave background for the
MDWW system. Clearly, the interaction between the soli-
ton and every peak of the cnoidal periodic wave is elastic
as phase changes. Solutions and figures obtained in this
paper might be helpful in further understanding the prop-
agation of nonlinear and dispersive long gravity waves on
shallow waters.

6 Summary and Discussion
It is proved that the (2+1)-dimensional MDWW sys-

tem (1) is nonlinearly self-adjoint. With the support of
the general theorem of conservation laws by Ibragimov,[6]

the property can be applied to construct countless conser-
vation laws for (1). Mathematically, the basic conserved
quantity can be applied in obtaining various estimates for
smooth solutions and defining suitable norms for weak so-
lutions, so it is worthy to be further investigated.

In addition, with the truncated Painlevé analysis and
the CTE method, the soliton-cnoidal wave solution to sys-
tem (1) is obtained. A good understanding of the solu-
tions to system (1) is very helpful for coastal and civil en-
gineers in applying the nonlinear water model to coastal
harbor design. For their practicability, the study on the
CTE method and more types of the interaction solutions
among different kinds of nonlinear excitations should be
furthered.
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[11] R. Traciná, M.S. Bruzon, M.L. Gandarias, and M. Torrisi,
Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 3036.

[12] S.Y. Lou, X.Y. Tang, and J. Lin, J. Math. Phys. 41 (2000)
8286.

[13] S.Y. Lou, Phys. Lett. A 277 (2000), 94.

[14] M.J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear
Evolution Equations and Inverse Scattering, Cambridge
Univ., New York (1991).

[15] Y.S. Li and J.E. Zhang, Phys. Lett. A 284 (2001) 253.

[16] A.H. Chen and X.M. Li, Chaos, Solitons & Fractals 27
(2006) 43.

[17] H.R. Miura, Backlund Transformation, Springer-Verlag,
Berlin (1978).

[18] R. Hirota, Phys. Rev. Lett. 27 (1971) 1192.

[19] S.Y. Lou, Phys. Rev. Lett. 80 (1998) 5027.

[20] S.Y. Lou, X.P. Cheng, and X.Y. Tang, arXiv:1208.5314v2
(2012).

[21] S.Y. Lou, X.R. Hu, and Y. Chen, J Phys. A: Math. Theor.
45 (2012) 155209.

[22] W.G. Cheng, B. Li, and Y. Chen, Commun. Theor. Phys.
63 (2015) 549.

[23] L.L. Huang, Y. Chen, and Z.Y. Ma, Commun. Theor.
Phys. 66 (2016) 189.

[24] J.X. Fei, Z.Y. Ma, and Y.M. Chen, Appl. Math. Comput.
268 (2015) 432.

[25] X.R. Hu and Y.Q. Li, Appl. Math. Lett. 51 (2016) 20.

[26] J.C. Chen and Z.Y. Ma, Appl. Math. Lett. 64 (2017) 87.

[27] S.Y. Lou and X.B. Hu, J. Math. Phys. 38 (1997) 6401.

[28] X.Y. Tang, S.Y. Lou, and Y. Zhang, Phys. Rev. E 66
(2002) 046601.

[29] X.Y. Tang and S.Y. Lou, J. Math. Phys. 44 (2003) 4000.

[30] D.S. Li and H.Q. Zhang, Appl. Math. Comput. 147
(2004) 789.

[31] C.L. Zheng, J.P. Fang, and L.Q. Chen, Chaos, Solitons
and Fractals 23 (2005) 1741.

[32] Z.Y. Ma, Chin. Phys. B 16 (2007) 1848.

[33] W.H. Huang, Chin. Phys. B 8 (2009) 3163.

[34] X.Y. Wen, Appl. Math. Comput. 219 (2013) 7730.

[35] Z.Y. Ma, J.X. Fei, and X.Y. Du, Commun. Theor. Phys.
64 (2015) 127.

[36] C.L. Chen and S.Y. Lou, Commun. Theor. Phys. 61

(2014) 545.


